- 5. Casey, R. (1979) Heredity 43, 265.
- Krishna, T. G., Croy, R. R. D. and Boulter, D. (1979) *Phytochemistry* 18, 1879.
- Gilroy, J., Wright, D. J. and Boulter, D. (1979) Phytochemistry 18, 315.
- 8. Boulter, D., Derbyshire, E. and Croy, R. R. D. (1977)
 Abhandlingen der Akademie der Wissenshaften der DDR. Abt.
 Mathematik, Naturwissenschaften, Teknik. 25, 11.
- Croy, R. R. D., Gatehouse, J. A., Evans, I. M. and Boulter, D. (1980) Planta 148, 49.
- 10. Casey, R. and Short, M. N. S. (1981) Phytochemistry 20, 21.
- 11. Wright, D. J., and Boulter, D. (1974) Biochem. J. 141, 413.
- 12. Mak, A. S. and Jones, B. L. (1978) Analyt. Biochem. 84, 432.
- Shewry, P. R., March, J. F. and Miflin, B. J. (1980) *Phytochemistry* 19, 2113.

Phytochemistry, 1981, Vol. 20, pp. 163-165. © Pergamon Press Ltd. Printed in England

0031-9422/81/0101-0163 \$02.00/0

PHELLANDRENE ENDOPEROXIDES FROM THE ESSENTIAL OIL OF CHENOPODIUM MULTIFIDUM

J. DE PASCUAL-T., I. S. BELLIDO, C. TORRES, B. A. SASTRE and M. GRANDE Department of Organic Chemistry, Salamanca University, Spain

(Received 19 March 1980)

Key Word Index—Chenopodium multifidum; Chenopodiaceae; essential oil; p-menthanic monoterpenes; phellandrene endoperoxides.

Abstract—The essential oil of Chenopodium multifidum does not contain ascaridole, but does contain two isomeric endoperoxides related to α -phellandrene, besides other structurally and biogenetically related p-menthanic monoterpenes.

INTRODUCTION

Ascaridole is the most characteristic component of the essential oils from Chenopodiaceae and is responsible for the anthelmintic properties of these oils [1].

Chenopodium multifidum L. (Rouvieva multifida, Moq.)* has been little studied with reports only on the isolation of α-phellandrene and anethole from Californian plants [2]; ascaridole, p-cymene, limonene and camphene from Brazilian plants [3]; and ascaridole, limonene, cisand trans-carveol ('paicol') from Argentinian plants [4], with a vague allusion to the likeness of the C. ambrosioides essential oil.

We have re-examined the essential oil from C. multifidum collected at the end of October, near Babilafuente (Salamanca) in western Spain.

RESULTS AND DISCUSSION

The essential oil contained monoterpenes, but it did not contain any ascaridole. The main fraction consisted of two

stereoisomeric endoperoxides (2, 3) related to α -phellandrene (1) and so far not reported as natural products, although they were obtained by Schenck *et al.* [5,6], by photo-oxidation of α -phellandrene (1).

^{*}The material for this work was identified by Prof. B. Casaseca Mena, Department of Botany, Salamanca University, where a specimen is held (Herbarium No. 19587).

Н	2 (CCl ₄)	3 (CCl ₄)	6(CHCl ₃)	7(CHCl ₃)
2	4.20 br. s	4.26 m		
3	_		2.48 (AB, 12, 2)	10000000
5	$4.38 \ br. \ d(6)*$	4.45 m	4.40 m	4.25 m
6	$6.29 \ br. \ d(6)$	6.10 dq (7,2)	6.75 dd(6,2)	6.56 br. s
8	$0.98 \ br. \ d(7)$	$0.83 \ br. \ d$	$0.93 \ d(6)$	$0.90 \ d(6)$
9			$1.01 \ d(6)$	$0.99 \ d(6)$
10	$1.90 \ d(2)$	1.92 d(2)	1.78 br. s	$1.72 \ d(2)$

Table 1. ¹H NMR data for 2, 3, 6 and 7 (60 MHz, TMS)

The *cis*-endoperoxide (2) was an oil, $[\alpha]_D - 23^\circ$ (c 1.46, CHCl₃), whose IR spectrum showed absorptions at 3040, 1660, 810 (C=CH) cm⁻¹. The ¹H NMR signals are shown in Table 1. MS, *m/e* (rel. int.): 168 (M⁺, 5), 136 (M⁺ - O₂, 59), 121 (136 - Me, 47), 93 (136 - C₃H₇, 100), 91 (23), 69 (21), 55 (53), 43 (59) in agreement with the structure.

The trans-endoperoxide (3), was also an oil, $[\alpha]_D - 45.5^{\circ}$ (c1.38, CHCl₃); it exhibited IR absorptions at 3040, 1650, 790 (C=CH) cm⁻¹; the ¹H NMR signals are shown in Table 1; the MS had the same fragmentation pattern as 1.

The stereochemistry of both endoperoxides was readily adduced from the diols obtained by reduction with LiAlH₄: 2 gave the diol 4, mp 148–149° and $[\alpha]_D + 88$ ° (c 1.48, MeOH) and 3, gave the diol 5, mp 168–169° and $[\alpha]_D + 28.4$ ° (c 0.46, MeOH), whose properties agreed with those reported for two *cis-p*-menth-6-en-2.5-diols [7–10].

The essential oil also contained two hydroxyketones, 6 and 7, clearly related with endoperoxides 2 and 3 respectively [11].

The major hydroxyketone **6** was an oil, $[\alpha]_D + 61.9^\circ$ (c1.4, CHCl₃). It was identified as a conjugated ketone by its UV: $\lambda_{\text{max}}^{\text{HOH}}$ at 230 nm (ε 9340). The IR also confirmed the presence of a conjugated ketone (1670), a C=CH(3010, 830) and a secondary OH(3400, 1050 cm⁻¹) groups. The ¹H NMR signals are shown in Table 1. MS $[m/e \text{ (rel. int.)}: 168 \text{ (M}^+, 40), 133 \text{ (M}^+ - \text{Me, 4), 150 (M}^+ - \text{H}_2\text{O, 3), 135}$

(150 - Me, 5), 126 (51), 111 (41), 107 (150 - C₃H₇, 24), 98 (M⁺ - C₅H₁₀, 100), 79 (13), 70 (38), 69 (36), 55 (16), 43 (25), 41 (20)], in agreement with the structure and relative stereochemistry.

Oxidation of 6 with $MnO_2 - C_6H_6$, gave 2-methyl-5-isopropyl-p-benzoquinone, mp 45-46° [12].

Hydroxyketone 7, $[\alpha]_D - 76.6^{\circ}$ (c 0.9, CHCl₃), exhibited the same MS fragmentation pattern as 6, M⁺ at m/e 168 (37).

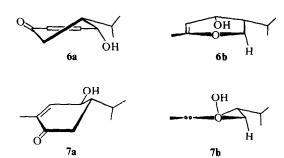
The UV and IR spectra of 7, showed also the presence of the conjugated C=O [$\lambda_{\text{max}}^{\text{EiOH}}$ at 233 nm (ϵ 6000) and ν 1670 cm⁻¹], one C=CH (3010, 820 cm⁻¹) and a secondary OH (3400, 1045 cm⁻¹). For the ¹H NMR signals, see Table 1.

All these data suggest that 6 and 7 were two epimeric hydroxyketones, which was confirmed by the CD curves. The hydroxyketones showed the dichroic absorptions:

6:
$$\Delta \varepsilon_{332} = -0.40$$
; $\Delta \varepsilon_{232} = +1.4$; $\Delta \varepsilon_{196} = +3.5$;
7: $\Delta \varepsilon_{328} = +0.07$; $\Delta \varepsilon_{231} = -6.8$; $\Delta \varepsilon_{201} = +10.2$.

The most important conformation of the *trans*-hydroxyketone 7, must be the envelope form shown (7a, 7b), with the hydroxyl and isopropyl substituents equatorial. The 4S,5S-enantiomers (7a, 7b) will show a positive Cotton effect for the $n-\pi^*$ band according to the reverse octant rule of the enones [13], and a positive Cotton effect for the shorter wavelength band, as predicted by the α -axial allylic rule [14].

The sign of the middle band is not easy to predict because the enone system must be roughly planar, although a twisted (1,3-diplanar) conformation with a negative Cotton effect [15], may also be important.


The signs of the Cotton effect of 7 are also identical to those of (-)-2-oxo-T-cadinol [16] and (+)-carvone*, and opposed to those of (-)-2-oxopopulifolic acid [17]. All these data (see also [18]) are in agreement with the configuration 4S, 5S, for 7.

The Cotton effects for the cis-isomer 6 can be explained assuming a half-chair conformation (6a, 6b), in which the isopropyl is equatorial and the hydroxyl is pseudoaxial or nearly pseudoequatorial, according to the rules for the enones [13–15]. The 4S.5R-enantiomer will show a negative Cotton effect for the $n-\pi^*$ band, a positive Cotton effect for the middle π - π^* band (positive helicity of C=C=O) and a positive Cotton effect for the short wavelength band, in agreement with those observed for the natural hydroxyketone 6.

^{*}Coupling constants (Hz) are given in parentheses.

^{*}The dichroic absorption of (+)-carvone, near 330 nm is bisignate ($\Delta \varepsilon = +0.05$; $\Delta \varepsilon = -0.12$), but at shorter wavelengths it shows $\Delta \varepsilon_{238} = -1.52$ and $\Delta \varepsilon_{209} = +1.78$ (MeOH).

165

Other components of the essential oil were p-cymene (8), Δ^3 -carene (9), 7-acetoxy-p-menthane (10), p-menth-5-en-cis-1,2,4-triol (11), p-menth-5-trans-1,2,4-triol (12) and p-menth-5-en-cis-1,3,4-triol (13). Acetate 10 showed a MS with M⁺ at m/e 198, which was consistent with the formula $C_{12}H_{22}O_2$. The IR spectrum showed only significant absorptions due to the acetoxyl group (1750, 1250 cm⁻¹), which was confirmed by ¹H NMR signals at δ 0.92 (6 H, d, J=6 Hz, Me₂CH), 1.96 (3 H, s, AcO), 3.75 (2 H, d, J=6 Hz, CH₂O-). The structures of triols 11, 12 and 13, were deduced from their spectral data.

REFERENCES

- de Pascual-T., J., Bellido, I. S., Torres, C. and Pérez, M. A. (1980) Riv. Ital. E.P.P.O.S. 62, 123.
- Hegnauer, R. (1964) Chemotaxonomie der Pflanzen, Vol. 3, p. 422, Birkhauser, Basel.
- Fester, G., Martinuzzi, E., Retamar, J. and Ricciardi, A. (1952-53) Rev. Fac. Ing. Quim. 21-22, 43; (1956) Bol. Acad. Córd. 39, 375.
- Fester, G., Martinuzzi, E., Retamar, J. and Ricciardi, A. (1960) Rev. Fac. Ing. Quim. 39, 21.

- Schenck, G. O., Kindel, K. G. and Mertens, H. J. (1953) Ann. 584, 125.
- Schonberg, A. (1968) Preparative Organic Photochemistry, p. 384. Springer, Berlin.
- 7. Schenck, G. O. (1957) Angew. Chem. 69, 579.
- 8. Stolow, R. D. and Sachdev, K. (1965) Tetrahedron 21, 1889.
- 9. Stolow, R. D. and Sachdev, K. (1971) J. Org. Chem. 36, 960.
- Gonzalez, A. G., Bermejo, J. B., Bermejo, J. L. and Massanet,
 G. M. (1972) An. Quim. 68, 319.
- 11. Turner, J. A. and Herz, W. (1977) J. Org. Chem. 42, 1895.
- Gal, J., Perrin, R. and Berny, M. F. (1965) Bull. Soc. Chim. Fr. 186.
- 13. Snatzke, G. (1965) Tetrahedron 21, 413.
- Burgstahler, A. W. and Barkhurst, R. C. (1970) J. Am. Chem. Soc. 92, 7601.
- Djerassi, C., Records, R., Bunnenberg, E., Mislow, K. and Moskowitz, A. (1962) J. Am. Chem. Soc. 84, 870
- de Pascual Teresa, J., Barrero, A. F., Medarde, M., San Feliciano, A. and Grande, M. (1978) An. Quim. 74, 1536.
- de Pascual Teresa, J., Urones, J. G., Herrero, J. A., Cinos, M. S. and Grande, M. (1978) An. Quim. 74, 166.
- Totty, R. N. and Hudec, J. (1971) J. Chem. Soc. Chem. Commun. 785.